A Spray-On Carbon Nanotube Artificial Neuron Strain Sensor for Composite Structural Health Monitoring
نویسندگان
چکیده
We present a nanocomposite strain sensor (NCSS) to develop a novel structural health monitoring (SHM) sensor that can be easily installed in a composite structure. An NCSS made of a multi-walled carbon nanotubes (MWCNT)/epoxy composite was installed on a target structure with facile processing. We attempted to evaluate the NCSS sensing characteristics and benchmark compared to those of a conventional foil strain gauge. The response of the NCSS was fairly good and the result was nearly identical to the strain gauge. A neuron, which is a biomimetic long continuous NCSS, was also developed, and its vibration response was investigated for structural damage detection of a composite cantilever. The vibration response for damage detection was measured by tracking the first natural frequency, which demonstrated good result that matched the finite element (FE) analysis.
منابع مشابه
Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites
This paper describes the development of an innovative carbon nanotube-based non-woven composite sensor that can be tailored for strain sensing properties and potentially offers a reliable and cost-effective sensing option for structural health monitoring (SHM). This novel strain sensor is fabricated using a readily scalable process of coating Carbon nanotubes (CNT) onto a nonwoven carrier fabri...
متن کاملCarbon Nanotube Based Self-sensing Concrete for Pavement Structural Health Monitoring
This research project developed self-sensing carbon-nanotube (CNT)/cement composites. The piezoresitive property of carbon nanotubes enables the composite to detect the stress/stain inside the pavement. Meanwhile, CNTs can also work as the reinforcement elements to improve the strength and toughness of the concrete pavement. Experimental results show that the electrical resistance of the compos...
متن کاملConformable Single-Walled Carbon Nanotube Thin Film Strain Sensors for Structural Monitoring
The need for monitoring the condition of large-scale infrastructure systems has motivated a recent interest in novel sensor technologies for structural health monitoring. To provide the structural health monitoring system with data that captures local structural behavior, the measurement of component-level strain is valuable. Although current foil-based strain gauges are capable of measuring st...
متن کاملCarbon nanotubes grown on glass fiber as a strain sensor for real time structural health monitoring
In order to more effectively monitor the health of composite structures, a fuzzy fiber sensor has been developed. The fuzzy fiber is a bundle of glass fibers with carbon nanotubes or nanofibers (CNTs or CNFs) grown on the surface. The nanotube coating makes the fiber bundle conductive while the small conductive path increases sensitivity. The fuzzy fiber sensor can replace conventional metal fo...
متن کاملMechanical-electrical characterization of carbon-nanotube thin films for structural monitoring applications
To measure component-level structural responses due to external loading, strain sensors can provide detailed information pertaining to localized structural behavior. Although current metal foil strain sensors are capable of measuring strain deformations, they suffer from disadvantages including long-term performance issues when deployed in the field environment. This paper presents a novel carb...
متن کامل